Assessment Tools in Sustainable Construction

Where we are:
- Levels: Materials, Buildings, Housing and Industrial Estates, Urban Areas
- Ecology: Decoupling of global welfare and the use of natural resources
- Society: User adequate architecture
- Economy: Life cycle cost

ETH Zurich
- Science and technology university with an outstanding research record
- Study, research and work place of 18,000 people from 80 nations
- About 350 professors in 15 departments

Staff
- Prof. Dr.-Ing. Wallbaum
- Regina Hardziewski, Dipl.-Ing
- Niko Heeren, MAS
- Viola John, Dipl.-Ing.
- Samuel Kellenberger, Dipl.-Arch.
- Sabrina Krank, Dipl.-Ing. Arch.
Structure

1. Overview over three (voluntary) different construction project assessment tools:
 a. SNARC
 b. SIA 112/1
 c. SB Tool
2. SB Tool methodology
3. Adaptation / Localisation

Documentation D 0200 “SNARC”

“Systematik zur Beurteilung der Nachhaltigkeit von Architekturprojekten für den Bereich Umwelt”
• Intended for the early planning phase (architectural contests)
• Systematic analysis of environmental aspects
• Three thematic focuses:
 – Site
 – Resources
 – Operability

➢ Rough guideline covering mostly environmental issues
Reference SIA 112/1 Nachhaltiges Bauen im Hochbau

• Addressing planner and client communication in order to pinpoint strategic sustainability goals
• Covers further aspects of sustainability
 a. Environment
 b. Society
 c. Economy

➢ Lacking indicators and benchmarks to evaluate or compare projects

SBTool

• Developed by members in more than 20 countries (iiSBE)
• Spreadsheet-based analysis software
• Allows adaptation to scope and region
• Covers 7 issues of sustainability:
 – Site selection and urban design
 – Energy and resources
 – Environmental load
 – Indoor environmental quality
 – Service quality
 – Social and economic aspects
 – Cultural aspects
SBTool - Features

• Number and text-based benchmarks can be defined
• Custom weightings
• Easy insertion of local criteria and/or language
• Modular in scope
 – Consideration of occupancy type
 – Phase (Pre-design, design, construction, etc.)
 – New and renovation projects
• Relative and absolute result outputs

➢ The SBTool allows a very high flexibility

SBTool - Modules

Source: International Initiative for a Sustainable Built Environment
Master List of SBTool Parameters

A Site Selection, Project Planning and Development

<table>
<thead>
<tr>
<th>A1 Site Selection</th>
<th>P-Dsn</th>
<th>Des</th>
<th>C&C</th>
<th>Ops</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1.1 Pre-development ecological value or sensitivity of land.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1.2 Pre-development agricultural value of land.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1.3 Vulnerability of land to flooding.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1.4 Potential for development to contaminate nearby bodies of water.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1.5 Pre-development contamination status of land.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1.6 Proximity of site to public transportation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1.7 Distance between site and centres of employment or residential occupancies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1.8 Proximity to commercial and cultural facilities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A2 Project Planning

A2.1 Feasibility of use of renewables.				
A2.2 Use of Integrated Design Process.				
A2.3 Potential environmental impact of development or re-development.				
A2.4 Provision of surface water management system.				
A2.5 Availability of potable water treatment system.				
A2.6 Availability of a split grey / potable water system.				
A2.7 Collection and recycling of solid wastes in the community or project.				
A2.8 Composting and re-use of sludge in the community or project.				
A2.9 Site orientation to maximize passive solar potential.				

A3 Urban Design and Site Development

A3.1 Development density.				
A3.2 Provision of mixed uses within the project.				
A3.3 Encouragement of walking.				

The full list of parameters is quite long...

Source: International Initiative for a Sustainable Built Environment
Structure and Scoring

- **7 Issues** (Indoor Env. Quality)
 - Sum of weighted Issue scores
- **29 Categories** (Ventilation)
 - Sum of weighted Category scores within Issue
- **125 Criteria** (Ventilation effectiveness)
 - Sum of weighted Criteria scores within Category

Source: International Initiative for a Sustainable Built Environment

Design target scores for Megaplex project, Ottawa, Canada

<table>
<thead>
<tr>
<th>Relative Performance Results</th>
<th>Project Information</th>
<th>Active Phase (set in Region file)</th>
<th>Design Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performed above the A line</td>
<td>This is a renovation project with a total gross area of 7000 m². It has an estimated lifespan of 75 years. It is located in Ottawa, Canada. The assessment is valid for the Design Phase.</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
</tr>
<tr>
<td>Environmental Loadings</td>
<td>Assumed the space is Typical, and minimum criteria is 0.02 m³/s Person</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
</tr>
<tr>
<td>Indoor Environmental Quality</td>
<td>The building is single storey, and has a number of active low-level parameters.</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
</tr>
<tr>
<td>Service Quality</td>
<td>The building is single storey, and has a number of active low-level parameters.</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
</tr>
<tr>
<td>Social and Economic Aspects</td>
<td>To see a full list of Issues, Categories and Criteria, go to the Issues worksheet.</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
</tr>
<tr>
<td>Total weighted building score</td>
<td>Amortization rate for embodied energy of existing materials is set at 2%.</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
<td>116 = Acceptable Practice; 3 = Good Practice</td>
</tr>
</tbody>
</table>

Active Weights

- A: 8%
- B: 23%
- C: 27%
- D: 18%
- E: 16%
- F: 5%
- G: 3%

Total weighted building score

3.1
Localization

- One feature of SBTool is its adaptability to specific needs (local and application)
- The Chair of Sustainable Construction is working on a localized version of the SBTool
 - Swiss conditions
 - Swiss norms
 - Language
 - Weighting system

Case study - Forum Chriesbach

EAWAG-facility “Forum Chriesbach”, Dübendorf

Results will be presented in SB08 conference in Melbourne

Images: Roger Frei, www.rogerfrei.com
The building

- Completed in June 2006
- Administrative and research building
- Strong focus on sustainability issues
- Best practice construction

Contacts & Info

- www.iisbe.org
- www.sbis.info
- Chair of Technical Committee:
 Manuel Macias, manuel.macias@upm.es
- SBTool design:
 Nils Larsson, larsson@iisbe.org

- Chair of Sustainable Construction – ETH Zurich
 www.ibb.bauq.ethz.ch