Breakout session 1: Building, Culture, Wellbeing

(1) Richard Boyd - Servicing the circular economy

- Collaboration with UCL, Schneider Electric, AECOM, ARUP
- Circular economy (CE) is critical for SDG goals
- Goal: Keep resources in place to benefit the most from it
- Looking beyond current building standards
- Application to real test case was wanted → Marshgate project
 - Mixed building project
 - Use for living, teaching, eating, etc.
- Barriers/Challenges of CE:
 - Universal (simple, easy buildings, better to change and adapt to different needs → usable on a larger scale)
 - Joint venture (share gains & pains, align stakeholders responsibility, rewarding joint ventures, product as service models)
 - Self-sufficient (less waste, reuse of waste and resources)
 - Passive (minimize use of active systems, create environment that needs no active systems)
 - Pre-loved (incorporating second-hand equipment in new buildings, increased market need & value of 2nd hand equipment)
- Identification of cross-cutting themes through interviews
- Barrier: Lack of data (e.g. about performance of passive buildings or how well 2nd hand equipment is performing)
- Opportunities: Cost & value performance (lower risk)
- Collaboration: Being clear about preliminary outcomes & communicating them (collaboration needed for sharing data); C. throughout whole supply chain
- Challenge: Think beyond traditional sustainability in areas of business model
- Most difficult scenario? 5 scenarios are not supposed to work individually, but all together complementary; Pre-loved is most difficult → no market maturity
- Current draft: Set of questions about the purpose → different set of scenarios as answer
- Currently focus: Understand people’s perceptions and needs
- Difficulty:
 - How will needs look like it 60 years? Scenarios shall define barriers
 - Project definition
 - Assessment themes
 - Creating long-term value

(2) Mari Läyttiniemi - Aalto Green Campus and new headquarters in Dipoli building

- Otaniemi: Main campus of Aalto University in Espoo, Helsinki
- Concentration on only one campus (while earlier there were three)
Outside energy production at campus: solar, wind, geoenergy, geothermal → results communicated through lobby displays

ACRE: Aalto University Campus & Real Estate (drivers of project)

Goal 2030: To be self-efficient, but might be too challenging

Main building (Dipoli): Auditorium, meeting rooms, restaurants, offices, etc. → multi-purpose

Hot-desking: No one has a desk of their own in the building (not even the president)
 - Argument: cost-saving
 - It was tried out by a part of the employees before
 - It can be very challenging, the opinions about it vary

Dipoli’s initial purpose: Student union building
 - completed in 1966
 - in 2010: bought by university
 - renovation: 20 months
 - cost: 24 Mio. €
 - building is protected, since it is Finnish heritage
 - 14,000m² surface

Geoenergy in the building
 - 17 dwellers
 - provides currently ~50% of heating & cooling of the building (more cooling)
 - expectation to last at least 25 years
 - investment (total): 250,000€
 - payback time: 5-10 years
 - possibility to install solar panels

Other sustainability aspects:
 - safety during renovation
 - service design as a tool → including all stakeholders
 - recycling
 - ...

Academic collaboration & user engagement in workspace design
 - Energy solutions: e-cars & campus bikes
 - Learning restaurant: Healthy & veggie favourable
 - Exhibition space: Strongly visible arts

“The building is only a beginning. It’s not ready neither final - rather an endeavour or direction” - the architect

Biggest challenge: high number of stakeholders → lots of expectations to align

Challenges/opportunities from old building:
 - 4th floor was too expensive
 - Disappointed that no solar panels could be installed (so far)
 - Not all spaces were redone (e.g. gala hall)
 - Original walls were kept → no specific need for new insolation

Data of project is shared online for academia & research → most difficult resource: manpower to clean it up
- **Hot desk:**
 - for space reduction reasons → Is it actually reasonably/efficient on comparison to the employee efficiency?
 - but they need to make “space” for more people
 - reduction of 30% of space
 - people are mostly happy about activity-based working space
 - support of students to use their own devices
- **More awareness should be brought to stakeholders → it’s kind of invisible**

(3) Syam Kumar Prabhakaran: Improving energy efficiency through policies and technologies (National University of Singapore (NUS))
- **Roots:** 1905, main changes in 1980
- **NUS sustainability steering committee**
 - Energy Task Force (created 2012)
 - Water Management Force
 - Waste Minimalism & Recycling
 - Built Environment
 - Green Space
- **Goal:** low carbon campus through engineering and tech & practices & policies and management
- **Tool:** Energy Monitoring (EUI) - Comparison actual vs. target
- **Policies:**
 - pay-as-you-use for research institutions/centers&admin
 - → empowerment of occupants
 - → savings returned to user
 - → student housing: pay-as-you-use-cards for air conditioning
 - green procurement (e.g. freezers & cabinets)
- **Technology**
 - chiller plant consolidation
 - chiller plant efficiency improved by 24% + reduced number of chiller plants needed
 - laboratory air change
 - local fire code requirements
 - lab ventilation risk assessments (hazardous substances, activities in lab, heat lead & ventilation demand)
 - optimization of air changes in lab
 - LAB - policies
 - optimal lab layout (space usage)
 - separated air conditioning systems
 - adaption of tech according to need
- **Recognition:** First green mark platinum lab; pioneer university of applying systems
- **Next steps towards low carbon campus**
 - district cooling system
 - use of renewable energy
 - SMART campus (test bed for smart cities)
○ use of tech & IT in every optimization (→research collaboration + use of business analytics)

- Current/future:
 ○ strong focus on labs
 ○ key focus of energy consumption
 ○ more challenging in tropical climate
 ○ new building 15-17 levels, labs on high stories
 ○ extra cooling/heating had to be paid
 ■ strong incentives are needed
 ■ most efficient way of making people aware
 ■ practical solutions for changing mindset
 ○ currently faculty pays bills
 ○ smart city movement helps creating use zones → also the smaller the zones, the more data, the higher the need of workforce for handling the data

(4) Tomas Refslund Paulsen: Sustainability at Maersk Tower (Copenhagen University) - opened 2017
 - research & lab building
 - faculty of health science was needed
 - incorporation in existing environment
 - basement: 2 stories of public open space areas (canteen & class rooms) + 15 stories of research levels + top floor: open to public
 - competition for building in advance:
 ○ focus on sustainability
 ○ fitting into environment
 ○ asset for the area
 - sustainability aspects:
 ○ energy: high degree of control and monitoring of energy consumption
 ○ solar panels exist, but can only cover minor part of energy need
 ○ more efficient: integrated sun shading → reduction of need for colling
 ○ there is lot of control and monitoring in building → challenge in tech competencies
 ○ sustainable laboratories
 ○ strong focus on flexibility (borderless & open transition spaces)
 ○ ventilation can be changed (e.g. from office to lab space)
 ○ “freezer” hotel in the basement with district cooling
 ○ usually labs are pretty closed up; here: open space, plazas on every floor → sharing of best practices and experiences in the design of the building
 ○ loop ventilation for more flexibility & energy optimization
 ○ rain water
 ■ collection & use of rain water
 ■ focus on how to manage heavy rains
 ■ big storage tanks of rain water (used for toilet flush, etc.)
- green roofs → cooling & biodiversity
 - a building for bicycles
 - high priority for biking facilities
 - parking outside and inside, path through the building
 - contribution to the city
 - public canteen & café
 - campus park (native trees + grasses as well as more tropical ones)
- www.greencampus.ku.dk
- Challenges:
 - get ventilation & energy system to work
 - goal: need only ⅔ of energy of a similar lab space
 - project manager was strong driver and keen to reach sustainability goals →
 key ambassadors are important to have onboard
- A few old buildings had to be abandoned for this, but an increase of students, teachers & conducted research could be identified
- Labs are more complicated than other building plannings → tech isn’t always the answer to sustainability, also design solutions could be
- Is it adopted by the public? → It is used by students and locals for picnics, etc.
- Cost factor: 200 Mio. €